Julia for Machine Learning

DG Wilson

- d9w.xyz
- d9w@pm.me
Outline

- What is Julia
- Data representation
- Statistics
- Machine Learning
What is Julia?
Julia is interactive

Julia can be run in the REPL in a terminal, in Jupyter (like this), or on a julia script (script.jl)

In [1]: println("Hello World")

Hello World
Julia is fast
Julia is compiled

Julia uses Just-in-time (JIT) compilation, implemented using LLVM. This means that code is compiled the first time that it is called. Here we define a Fibonacci function, but it is not yet compiled

In [8]: def fib(n) = n < 2 ? n : fib(n-1) + fib(n-2)

Out[8]: fib (generic function with 1 method)
The first time that we run the function, it will take longer to compile. However, after compilation, the function will be much faster.
We can also evaluate the machine code which the function compiles to

```
In [5]: @code_lowered fib(10)
```

```
Out[5]: CodeInfo(
    1 1 - %1 = n < 2
    |--- goto #3 if not %1
    2 - return n
    3 - %4 = n - 1
    |   %5 = (Main.fib)(%4)
    |   %6 = n - 2
    |   %7 = (Main.fib)(%6)
    |   %8 = %5 + %7
    |   return %8
)
In [6]: `@code_native fib(10.2)`

```assembly
.text
; Function fib {
; Location: In[2]:1
 pushq %rbx
 subq $16, %rsp
 vmovapd %xmm0, %xmm1
 movabsq $140100925897896, %rax # imm = 0x7F6BC9EBBCA8
 ; Function <; {
 ; Location: float.jl:497
 ; Function <; {
 ; Location: float.jl:452
 vmovsd (%rax), %xmm0 # xmm0 = mem[0],zero
 vucomisd %xmm1, %xmm0
 ;}}
 ja L99
 movabsq $140100925897904, %rax # imm = 0x7F6BC9EBBCB0
 ; Location: In[2]:1
 ; Function -; {
 ; Location: promotion.jl:315
 ; Function -; {
 ; Location: float.jl:397
 vaddsd (%rax), %xmm1, %xmm0
 ;}}
 movabsq $fib, %rbx
 vmovsd %xmm1, (%rsp)
 callq *%rbx
 vmovsd %xmm0, 8(%rsp)
 movabsq $140100925897912, %rax # imm = 0x7F6BC9EBBCB8
 ; Function -; {
 ; Location: promotion.jl:315
 ; Function -; {
 ; Location: float.jl:397
 vmovsd (%rsp), %xmm0 # xmm0 = mem[0],zero
 vaddsd (%rax), %xmm0, %xmm0
```
callq  *%rbx

; Function +; {
; Location: float.jl:395
  vaddsd  8(%rsp), %xmm0, %xmm0
;
  addq  $16, %rsp
  popq  %rbx
  retq

L99:
  vmovapd %xmm1, %xmm0
  addq  $16, %rsp
  popq  %rbx
  retq
  nopl  (%rax)
;
}
Julia is typed

Julia's type system is

- dynamic (types are checked at runtime)
- nominative (variables rely on explicit type declaration for compatibility)
- parametric (generic types can be parameterized)

Abstract types can be defined and subclassing, allowing for flexibility of not declaring a type. Every type in Julia is a subclass of the `Any` type.
Below is the type hierarchy of the Base Types (as of Julia 0.5, may not be current):
In [7]: Integer <: Number

Out[7]: True

In [8]: Integer <: AbstractFloat

Out[8]: False
We can define composite types, like a Class or object in different languages.

In [9]:
mutable struct Foo
   bar::Int
   baz
end
In Julia, functions are not part of the class definition, as they are in C++ or Python. Instead, only the values of the composite type are defined. We can define default constructors separately, or other functions:

```julia
In [10]:
 Foo() = Foo(10, "Hello")

 function Foo(x::Int)
 Foo(x, nothing)
 end

 function double!(x::Foo)
 x.bar *= 2
 end

Out[10]: double! (generic function with 1 method)

In [11]:
 f = Foo()
 g = Foo(10)
 println("f: ", f)
 println("g: ", g)
 double!(f)
 println("f: ", f)

f: Foo(10, "Hello")
g: Foo(10, nothing)
f: Foo(20, "Hello")
```
Julia is flexible

Multiple dispatch is at the base of Julia, allowing for both object oriented and functional programming methods
In [12]: methods(+)

Out[12]:

174 methods for generic function +:

- +(x::Bool, z::Complex{Bool}) in Base at complex.jl:277
  (https://github.com/JuliaLang/julia/tree/a4cb80f3edcf8cea00bd9660e3b65f544)
- +(x::Bool, y::Bool) in Base at bool.jl:104
  (https://github.com/JuliaLang/julia/tree/a4cb80f3edcf8cea00bd9660e3b65f544)
- +(x::Bool) in Base at bool.jl:101
  (https://github.com/JuliaLang/julia/tree/a4cb80f3edcf8cea00bd9660e3b65f544)
- +{T<:AbstractFloat} (x::Bool, y::T) in Base at bool.jl:112
  (https://github.com/JuliaLang/julia/tree/a4cb80f3edcf8cea00bd9660e3b65f544)
- +(x::Bool, z::Complex) in Base at complex.jl:284
  (https://github.com/JuliaLang/julia/tree/a4cb80f3edcf8cea00bd9660e3b65f544)
- +(a::Float16, b::Float16) in Base at float.jl:392
  (https://github.com/JuliaLang/julia/tree/a4cb80f3edcf8cea00bd9660e3b65f544)
- +(x::Float32, y::Float32) in Base at float.jl:394
  (https://github.com/JuliaLang/julia/tree/a4cb80f3edcf8cea00bd9660e3b65f544)
- +(x::Float64, y::Float64) in Base at float.jl:395
  (https://github.com/JuliaLang/julia/tree/a4cb80f3edcf8cea00bd9660e3b65f544)
- +(z::Complex{Bool}, x::Bool) in Base at complex.jl:278
  (https://github.com/JuliaLang/julia/tree/a4cb80f3edcf8cea00bd9660e3b65f544)
- +(z::Complex{Bool}, x::Real) in Base at complex.jl:292
  (https://github.com/JuliaLang/julia/tree/a4cb80f3edcf8cea00bd9660e3b65f544)
- +(::Missing, ::Missing) in Base at missing.jl:92
  (https://github.com/JuliaLang/julia/tree/a4cb80f3edcf8cea00bd9660e3b65f544)
In [13]: 

    f + g

MethodError: no method matching +(::Foo, ::Foo)
Closest candidates are:
   +(::Any, ::Any, !Matched::Any, !Matched::Any...) at operators.jl:502

Stacktrace:
   [1] top-level scope at In[13]:1

In [14]: 

    import Base.+
    +(a::Foo, b::Foo) = Foo(a.bar + b.bar)

Out[14]: + (generic function with 175 methods)

In [15]: 

    println("f: ", f)
    println("g: ", g)
    f + g

    f: Foo(20, "Hello")
    g: Foo(10, nothing)

Out[15]: Foo(30, nothing)
Julia is compatible

Julia natively works with C and Fortran. Packages exist to interface with C++, Python, MATLAB, Java, and more.
In [21]: using PyCall

In [22]: @pyimport scipy.optimize as so
   so.newton(x -> cos(x) - x, 1)

Out[22]: 0.7390851332151607
Julia is growing
Data in Julia

Some (but not all!) popular packages for data representation, manipulation, and visualization

Database Interaction

C wrappers and full Julia implementations for many databases, such as

- SQLite.jl
- MySQL.jl
- Mongo.jl
- LibPQ.jl
In [30]: using DataFrames

DataFrames.jl

Similar to pandas in Python, DataFrames is a library for data representation and manipulation
In [31]: names = DataFrame(ID = [20, 40], Name = ["John Doe", "Jane Doe"])

Out[31]:

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int64</td>
<td>String</td>
</tr>
<tr>
<td>1</td>
<td>John Doe</td>
</tr>
<tr>
<td>2</td>
<td>Jane Doe</td>
</tr>
</tbody>
</table>

In [32]: jobs = DataFrame(ID = [20, 40], Job = ["Lawyer", "Doctor"])

Out[32]:

<table>
<thead>
<tr>
<th>ID</th>
<th>Job</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int64</td>
<td>String</td>
</tr>
<tr>
<td>1</td>
<td>Lawyer</td>
</tr>
<tr>
<td>2</td>
<td>Doctor</td>
</tr>
</tbody>
</table>

A DataFrame isn't a matrix, it operates more like a database. For example, you can do joins with DataFrames

In [33]: join(names, jobs, on = :ID)

Out[33]:

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Job</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int64</td>
<td>String</td>
<td>String</td>
</tr>
<tr>
<td>1</td>
<td>John Doe</td>
<td>Lawyer</td>
</tr>
<tr>
<td>2</td>
<td>Jane Doe</td>
<td>Doctor</td>
</tr>
</tbody>
</table>
In [34]: using RDatasets

RDatasets.jl

Many sample datasets that are included in R and others that are popular in R
```python
iris = datasets['iris']
```

<table>
<thead>
<tr>
<th>SepalLength</th>
<th>SepalWidth</th>
<th>PetalLength</th>
<th>PetalWidth</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float64</td>
<td>Float64</td>
<td>Float64</td>
<td>Float64</td>
<td>Categorical...</td>
</tr>
<tr>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>4.9</td>
<td>3.0</td>
<td>1.4</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>4.7</td>
<td>3.2</td>
<td>1.3</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>4.6</td>
<td>3.1</td>
<td>1.5</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>5.0</td>
<td>3.6</td>
<td>1.4</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>5.4</td>
<td>3.9</td>
<td>1.7</td>
<td>0.4</td>
<td>setosa</td>
</tr>
<tr>
<td>4.6</td>
<td>3.4</td>
<td>1.4</td>
<td>0.3</td>
<td>setosa</td>
</tr>
<tr>
<td>5.0</td>
<td>3.4</td>
<td>1.5</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>4.4</td>
<td>2.9</td>
<td>1.4</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>4.9</td>
<td>3.1</td>
<td>1.5</td>
<td>0.1</td>
<td>setosa</td>
</tr>
<tr>
<td>5.4</td>
<td>3.7</td>
<td>1.5</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>4.8</td>
<td>3.4</td>
<td>1.6</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>4.8</td>
<td>3.0</td>
<td>1.4</td>
<td>0.1</td>
<td>setosa</td>
</tr>
<tr>
<td>4.3</td>
<td>3.0</td>
<td>1.1</td>
<td>0.1</td>
<td>setosa</td>
</tr>
<tr>
<td>5.8</td>
<td>4.0</td>
<td>1.2</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>5.7</td>
<td>4.4</td>
<td>1.5</td>
<td>0.4</td>
<td>setosa</td>
</tr>
<tr>
<td>5.4</td>
<td>3.9</td>
<td>1.3</td>
<td>0.4</td>
<td>setosa</td>
</tr>
<tr>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.3</td>
<td>setosa</td>
</tr>
<tr>
<td>5.7</td>
<td>3.8</td>
<td>1.7</td>
<td>0.3</td>
<td>setosa</td>
</tr>
<tr>
<td>5.1</td>
<td>3.8</td>
<td>1.5</td>
<td>0.3</td>
<td>setosa</td>
</tr>
<tr>
<td>5.4</td>
<td>3.4</td>
<td>1.7</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>5.1</td>
<td>3.7</td>
<td>1.5</td>
<td>0.4</td>
<td>setosa</td>
</tr>
<tr>
<td>4.6</td>
<td>3.6</td>
<td>1.0</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>5.1</td>
<td>3.3</td>
<td>1.7</td>
<td>0.5</td>
<td>setosa</td>
</tr>
<tr>
<td>4.8</td>
<td>3.4</td>
<td>1.9</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>5.0</td>
<td>3.0</td>
<td>1.6</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>5.0</td>
<td>3.4</td>
<td>1.6</td>
<td>0.4</td>
<td>setosa</td>
</tr>
<tr>
<td>5.2</td>
<td>3.5</td>
<td>1.5</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>5.2</td>
<td>3.4</td>
<td>1.4</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>4.7</td>
<td>3.2</td>
<td>1.6</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
In [36]:
    sort!(iris, :PetalLength)
    ismall = head(iris, 4)

Out[36]:

<table>
<thead>
<tr>
<th>SepalLength</th>
<th>SepalWidth</th>
<th>PetalLength</th>
<th>PetalWidth</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float64</td>
<td>Float64</td>
<td>Float64</td>
<td>Float64</td>
<td>Categorical...</td>
</tr>
<tr>
<td>1</td>
<td>4.6</td>
<td>3.6</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>4.3</td>
<td>3.0</td>
<td>1.1</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>5.8</td>
<td>4.0</td>
<td>1.2</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>5.0</td>
<td>3.2</td>
<td>1.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>
In [37]: using Query

Query.jl

Allows for querying many data structures, including DataFrames, to create new DataFrames or matrices

In [38]: queried = @from i in ismall begin
    @where i.SepalWidth < 4.2 && i.SepalLength > 5.4
    @select {i.SepalWidth, i.SepalLength, i.Species}
    @collect DataFrame
end

Out[38]:

<table>
<thead>
<tr>
<th>SepalWidth</th>
<th>SepalLength</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float64</td>
<td>Float64</td>
<td>Categorical...</td>
</tr>
<tr>
<td>1</td>
<td>4.0</td>
<td>5.8</td>
</tr>
</tbody>
</table>
We can also do this with logical indexing, using the different columns as Arrays

<table>
<thead>
<tr>
<th>In [39]:</th>
<th>x = ismall[:SepalWidth] .&lt; 4.2</th>
</tr>
</thead>
</table>
| Out[39]: | 4-element BitArray{1}:
| | true
| | true
| | true
| | true

<table>
<thead>
<tr>
<th>In [40]:</th>
<th>y = ismall[:SepalLength] .&gt; 5.4</th>
</tr>
</thead>
</table>
| Out[40]: | 4-element BitArray{1}:
| | false
| | false
| | true
| | false

<table>
<thead>
<tr>
<th>In [41]:</th>
<th>indices = x .* y</th>
</tr>
</thead>
</table>
| Out[41]: | 4-element BitArray{1}:
| | false
| | false
| | true
| | false
In [42]: queried

Out[42]:

<table>
<thead>
<tr>
<th></th>
<th>SepalWidth</th>
<th>SepalLength</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float64</td>
<td>Float64</td>
<td>Categorical...</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.0</td>
<td>5.8</td>
<td>setosa</td>
</tr>
</tbody>
</table>

In [43]: ismall[:, SepalLength][indices]

Out[43]: 1-element Array{Float64,1}:
5.8
In [44]: using Gadfly

Gadfly.jl

A popular pure-Julia data visualization package. Other options include PyPlot.jl (wrapper of matplotlib), GR.jl (wrapper of GR), and Plots.jl (meta-wrapper)
In [45]:
plot(iris, x="SepalLength", y="SepalWidth", color="Species", shape="Species", geom.point)

Out[45]:

![Scatter plot of Sepal Length vs. Sepal Width with species color and shape](image)
In [46]: `using Distributions`

In [47]: `X = rand(MultivariateNormal([0.0, 0.0], [1.0 0.5; 0.5 1.0]), 10000); println(X[1:10])`

```
[1.28396, 0.786187, -0.0201795, 0.995887, 0.449988, -0.0982218, -0.833681, -0.505184, 1.80533, 1.99911]
```
In [48]: `plot(x=X[1,:], y=X[2,:], Geom.hexbin)`

Out[48]:

```
```

In [ ]:
Statistics in Julia

Julia has been used by mathematicians primarily over its history and therefore has a rich mathematic ecosystem
In [32]: using Distributions

Distributions.jl

Used to generate data according to distributions (as seen in the previous section) or to fit distributions to data

In [33]: using DataFrames, RDatasets
iris = dataset("datasets", "iris");
We can use Maximum Likelihood Estimation to fit a distribution

\[
X = \text{iris}[:\text{SepalLength}]
\]
\[
d = \text{fit}_m\text{le}(\text{Normal, } X)
\]

To compare the result, we can generate data from this distribution and calculate the mean squared error.

\[
y = \text{rand}(d, \text{length}(X));
\]
\[
\text{sum}((X - y)^2)
\]

\[
\text{Out}[34]: \text{Normal}\{\text{Float64}\}(\mu=5.843333333333335, \sigma=0.8253012917851409)
\]

\[
\text{Out}[35]: 180.43261776491047
\]
using GLM

**GLM.jl**

Generalized Linear Models for linear regression. We'll look at ordinary least squares regression.
In [37]:
species = unique(iris[:, :Species])
iris[:, :Sind] = [indexin([i], species)[1] for i in iris[:, :Species]]
head(iris)

Out[37]:

<table>
<thead>
<tr>
<th>SepalLength</th>
<th>SepalWidth</th>
<th>PetalLength</th>
<th>PetalWidth</th>
<th>Species</th>
<th>Sind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float64</td>
<td>Float64</td>
<td>Float64</td>
<td>Float64</td>
<td>Categorical...</td>
<td>Int64</td>
</tr>
<tr>
<td>1</td>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2</td>
<td>setosa 1</td>
</tr>
<tr>
<td>2</td>
<td>4.9</td>
<td>3.0</td>
<td>1.4</td>
<td>0.2</td>
<td>setosa 1</td>
</tr>
<tr>
<td>3</td>
<td>4.7</td>
<td>3.2</td>
<td>1.3</td>
<td>0.2</td>
<td>setosa 1</td>
</tr>
<tr>
<td>4</td>
<td>4.6</td>
<td>3.1</td>
<td>1.5</td>
<td>0.2</td>
<td>setosa 1</td>
</tr>
<tr>
<td>5</td>
<td>5.0</td>
<td>3.6</td>
<td>1.4</td>
<td>0.2</td>
<td>setosa 1</td>
</tr>
<tr>
<td>6</td>
<td>5.4</td>
<td>3.9</td>
<td>1.7</td>
<td>0.4</td>
<td>setosa 1</td>
</tr>
</tbody>
</table>

In [38]:
ols = lm(@formula(Sind ~ PetalWidth), iris)

Out[38]:
StatsModels.DataFrameRegressionModel{LinearModel{LmResp{Array{Float64,1}},DensePredChol{Float64,LinearAlgebra.Cholesky{Float64,Array{Float64,2}}}},Array{Float64,2}}

Formula: Sind ~ 1 + PetalWidth

Coefficients:

| Estimate | Std.Error | t value | Pr(>|t|) |
|----------|-----------|---------|----------|
| (Intercept) | 0.767001  | 0.0365708 | 20.9731  | <1e-45 |
| PetalWidth | 1.02807 | 0.0257596 | 39.9102  | <1e-80 |

In [39]:
stderr(ols)

Out[39]:
2-element Array{Float64,1}:
0.036570760522212836
0.02575959315195414
Machine Learning

As with the previous section, we'll look at some, but not all, popular machine learning packages in Julia. This part of the ecosystem is under heavy active development currently and could use more full-Julia options.
In [40]: using LossFunctions

**LossFunctions.jl**

Provides a variety of loss functions for classification and regression tasks
In [41]:
   h = predict(ols)
   h[1:10]

Out[41]:
   10-element Array{Float64,1}:
   0.97261481853977
   0.97261481853977
   0.97261481853977
   0.97261481853977
   0.97261481853977
   1.1782289309067273
   1.0754218747232487
   0.97261481853977
   0.97261481853977
   0.8698077623562915

In [42]:
   sum(value(LogitDistLoss(), iris[:Sind], h))

Out[42]:
   2.107057372318687
DecisionTree.jl

Provides Decision Trees and Random Forests, with a scikit-learn based API
```python
In [44]:
features = convert(Array, iris[1:4])
labels = string.(iris[:,Species])
model = DecisionTreeClassifier(max_depth=2)

Out[44]:
DecisionTreeClassifier
 max_depth: 2
 min_samples_leaf: 1
 min_samples_split: 2
 min_purity_increase: 0.0
 pruning_purity_threshold: 1.0
 n_subfeatures: 0
 classes: root:
 nothing
 nothing

In [45]:
DecisionTree.fit!(model, features, labels)
p

print_tree(model)

Feature 3, Threshold 2.45
L-> setosa : 50/50
R-> Feature 4, Threshold 1.75
 L-> versicolor : 49/54
 R-> virginica : 45/46
```
In [46]: y = DecisionTree.predict(model, features);
sum(y .!= iris[:,Species])

Out[46]: 6
In [47]: using Gadfly

In [48]:

```julia
using Gadfly

p1 = plot(iris, x="SepalLength", y="SepalWidth", color="Species", shape="Species",
 Geom.point,
 Guide.title("Ground truth"));
p2 = plot(iris, x="SepalLength", y="SepalWidth", color=y, shape=y, Geom.point,
 Guide.title("Prediction"));
set_default_plot_size(700pt, 300pt)
hstack(p1, p2)
```

Out[48]:
Deep Learning

Multiple new options being actively developed

- Mocha.jl
- Knet.jl
- Flux.jl
- Tensorflow.jl (wrapper of Python)

Native GPU support is available through CUDAnative.jl
In [ ]: using Flux

model = Chain(
    Dense(768, 128, σ),
    LSTM(128, 256),
    LSTM(256, 128),
    Dense(128, 10),
    softmax)

loss(x, y) = crossentropy(model(x), y)

Flux.train!(loss, data, ADAM(....))
Thank you!

https://github.com/d9w/julia_presentation.git
(https://github.com/d9w/julia_presentation.git).